“We believe this discovery represents a new concept of biology that will be transformative in medicine,” says Nicolas Bazan, MD, PhD, Boyd Professor and Director of the Neuroscience Center of Excellence at LSU Health New Orleans.
“We found that elovanoids have unique structures and that they enhance the expression of pro-survival proteins in cells undergoing uncompensated oxidative stress,” says Dr. Bazan.
Bazan and his team found that ELVs are made from 32 or 34 carbon-length fatty acid precursors produced naturally in human retinal pigment epithelial (RPE) cells. Most of the known lipid mediators or messengers are derived from 18, 20, or 22 carbon-length fatty acid precursors, including prostaglandins, leukotrienes, lipoxyns, endocanabinoids, resolvins and docosanoids. Elovanoids have structures reminiscent of docosanoids but with different physicochemical properties and alternatively regulated biosynthetic pathways. That elovanoids are longer than all known mediators may be the key to their potency. The longer elovanoids may be able to reach and bind for a longer period of time to receptors in cells necessary to induce cell survival.
“This is a very exciting discovery that opens a path forward to expand the science of neuroprotection,” says Bazan. “Our research reveals potential therapeutic targets for retinal degeneration diseases. In addition, these findings provide major conceptual advances of broad relevance for the survival of neural as well as any other cells in the body by turning on neuroprotection using a set of molecules that mimic how the body naturally activates this protection.”
Co-authors include Bokkyoo Jun, Pranab Mukherjee, Aram Asatryan, Marie-Audrey Kautzmann, Jessica Heap, William A. Gordon and Surjyadipta Bhattacharjee at LSU Health New Orleans Neuroscience Center of Excellence, as well as Rong Yang and Nicos A. Petasis at the University of Southern California, Los Angeles.
The research was supported by National Institutes of Health grants GM103340 from the National Institute of General Medical Sciences, EY005121 from the National Eye Institute, and NS046741 from the National Institute of Neurological Disorders and Stroke, as well as a grant from the Eye, Ear, Nose & Throat Foundation, and in part by an unrestricted departmental grant from Research to Prevent Blindness, Inc., New York.